Concrete ensemble Kalman filters with rigorous catastrophic filter divergence.
نویسندگان
چکیده
The ensemble Kalman filter and ensemble square root filters are data assimilation methods used to combine high-dimensional, nonlinear dynamical models with observed data. Ensemble methods are indispensable tools in science and engineering and have enjoyed great success in geophysical sciences, because they allow for computationally cheap low-ensemble-state approximation for extremely high-dimensional turbulent forecast models. From a theoretical perspective, the dynamical properties of these methods are poorly understood. One of the central mysteries is the numerical phenomenon known as catastrophic filter divergence, whereby ensemble-state estimates explode to machine infinity, despite the true state remaining in a bounded region. In this article we provide a breakthrough insight into the phenomenon, by introducing a simple and natural forecast model that transparently exhibits catastrophic filter divergence under all ensemble methods and a large set of initializations. For this model, catastrophic filter divergence is not an artifact of numerical instability, but rather a true dynamical property of the filter. The divergence is not only validated numerically but also proven rigorously. The model cleanly illustrates mechanisms that give rise to catastrophic divergence and confirms intuitive accounts of the phenomena given in past literature.
منابع مشابه
Nonlinear stability and ergodicity of ensemble based Kalman filters
The ensemble Kalman filter (EnKF) and ensemble square root filter (ESRF) are data assimilation methods used to combine high dimensional, nonlinear dynamical models with observed data. Despite their widespread usage in climate science and oil reservoir simulation, very little is known about the long-time behavior of these methods and why they are effective when applied with modest ensemble sizes...
متن کاملNonlinear stability of the ensemble Kalman filter with adaptive covariance inflation
The Ensemble Kalman filter and Ensemble square root filters are data assimilation methods used to combine high dimensional nonlinear models with observed data. These methods have proved to be indispensable tools in science and engineering as they allow computationally cheap, low dimensional ensemble state approximation for extremely high dimensional turbulent forecast models. From a theoretical...
متن کاملCatastrophic Filter Divergence in Filtering Nonlinear Dissipative Systems
Two types of filtering failure are the well known filter divergence where errors may exceed the size of the corresponding true chaotic attractor and the much more severe catastrophic filter divergence where solutions diverge to machine infinity in finite time. In this paper, we demonstrate that these failures occur in filtering the L-96 model, a nonlinear chaotic dissipative dynamical system wi...
متن کاملAdaptive ensemble Kalman filtering of nonlinear systems
A necessary ingredient of an ensemble Kalman filter is covariance inflation [1], used to control filter divergence and compensate for model error. There is an ongoing search for inflation tunings that can be learned adaptively. Early in the development of Kalman filtering, Mehra [2] enabled adaptivity in the context of linear dynamics with white noise model errors by showing how to estimate the...
متن کاملComparison of Ensemble Kalman Filters Under Non-Gaussianity
Recently various versions of ensemble Kalman filters (EnKF) has been proposed and studied. This work concerns, in a mathematically rigorous manner, the relative performance of two major versions of EnKF when the forecast ensemble is non-Gaussian. The approach is based on the stability of the filtering methods against small model violations, using the expected squared L2 distance as a measure of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 34 شماره
صفحات -
تاریخ انتشار 2015